

# **Comprehensive PFAS Treatment:** Separate/Concentrate/Destroy

May 3, 2023, 4:00 p.m.





# Comprehensive PFAS Treatment: Separate / **Concentrate / Destroy**

Moderator: Rhonda Hampton, P.E., ECT2

Speakers:

- Hunter Anderson, Ph.D, PFAS Subject Matter Specialist, AFCEC/CZTE
- David Kempisty, Ph.D, P.E., Director, Emerging Contaminants, ECT2/Montrose
- Brian Pinkard, Ph.D, P.E., CTO, Aquagga, Inc.





### Thank You to our Education Session Sponsors!













# ENGINEER TRAINING CONFERENCE & EXPO MISSION **SUCCESS STARTS** HERE SAMEJETC.ORG SAME

### **SPEAKER**



### Hunter's Fun Facts

- From the Oklahoma plains... decedent of homesteaders from the land runs
- Survived two tornadoes!

# **ENGINEER** TRAINING CONFERENCE & EXPO MISSION **SUCCESS STARTS** SAMEJETC.ORG SAM

### **SPEAKER**



### Dave's Fun Facts

- Knows the majority of the 1984 Detroit Tigers' lineup only because he continues to wait & hope for their next championship season.
- Edited two books on PFAS!
- Has completed a marathon and has gotten married ... on the same day.

# **ENGINEER** TRAINING CONFERENCE & EXPO MISSION **SUCCESS STARTS** HERE SAMEJETC.ORG SAL

### **SPEAKER**



### Brian's Fun Facts

- Seattle Mariners fan for many disappointing years
- First time visiting Texas
- Hobbies: rock climbing, skiing, backpacking, running... anything active & outside





# Challenges for the DoD

Dr. Hunter Anderson
AFCEC/CZTE



### Challenges for the DoD



### How "dirty" is "dirty"

- Thousands of AFFF-impacted source areas: when is remediation required?
- Novel retention mechanisms
- Background contamination from decades of atmospheric deposition

#### > How "clean" is "clean"

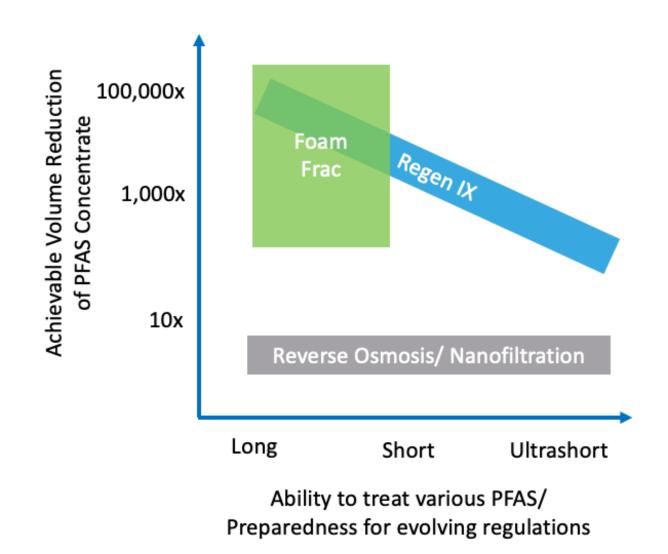
- What are realistic performance objectives for treatment systems
- Legal discharge requirements are highly variable
- Long- vs short-chain treatment efficiencies

### Desire for destructive technologies

- What premium are we willing to pay for destruction?
- Mobile (on-site) vs regional (hub and spoke) capabilities



Separate – Concentrate - Destroy






### Separate and Concentrate: Preparedness for Destruction

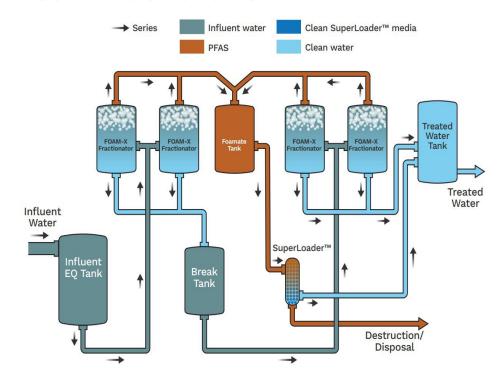
Tomorrow's destructive technologies require a volume reduction and concentration step

- FF and RIEX
- **Membranes**










## Separate and Concentrate – Two Technologies

#### Regenerable Ion Exchange Resin

#### Treated Water Regenerant Solution Regenerant SORBIX™ Solution RePURE Vessel Vessels SuperLoader™/ SuperLoading™ Distillation Vessel Spent Influent Water Regenerant Solution Still Bottoms -

#### **Foam Fractionation**



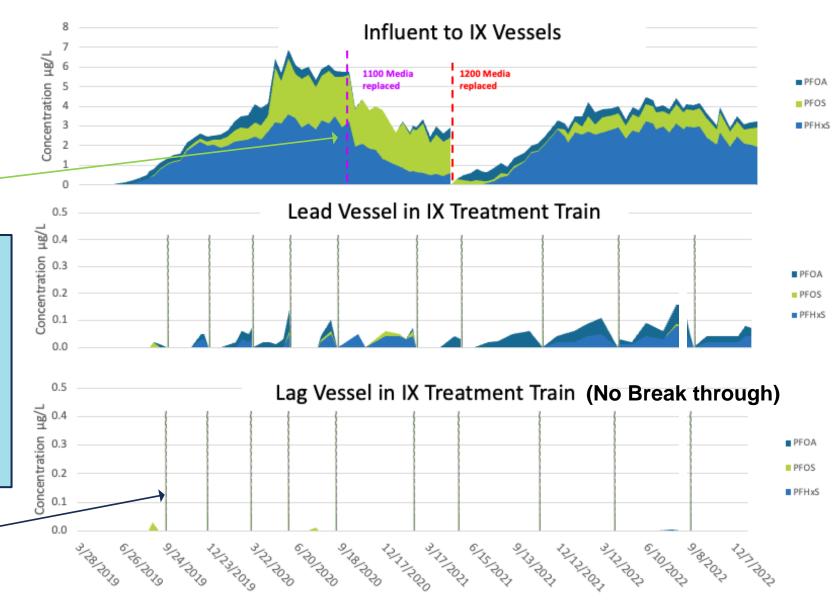
- Effective - Waste Minimization - Hub and Spoke
- Future Proof - Future Proof

- Simple
- Avoided Pre-treatment Short Chain Challenges
- Low cost
- Additives

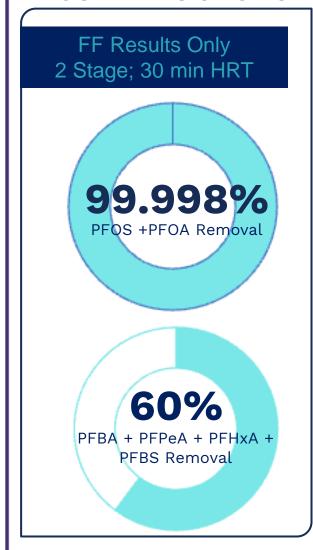
- Off-ramp to destruction

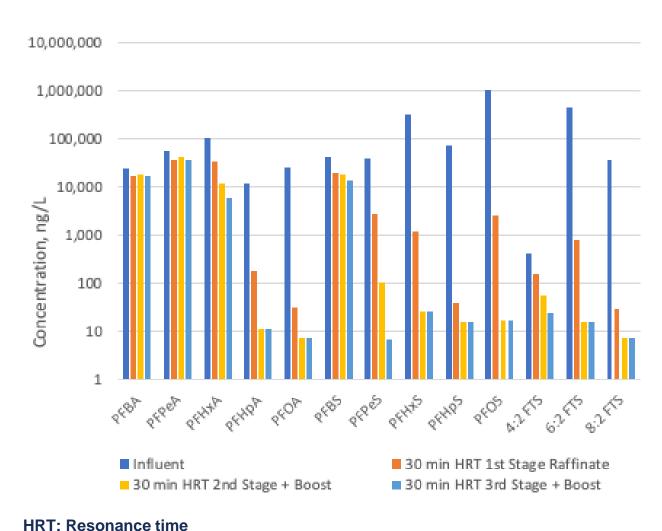


### Separate & Concentrate - Data Regenerable IX Resin


Dashed lines indicate pretreatment media replaced

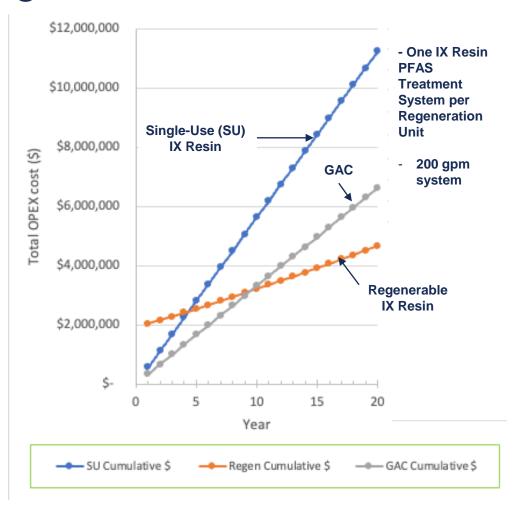
Across 4+ years of regeneration cycles, the IX resin continues to achieve PFAS treatment objectives


No IX Resin Disposed in Landfills


\* Actual site performance

**Vertical lines indicate resin** regeneration in lead vessel




### Separate & Concentrate – Data Foam Fractionation

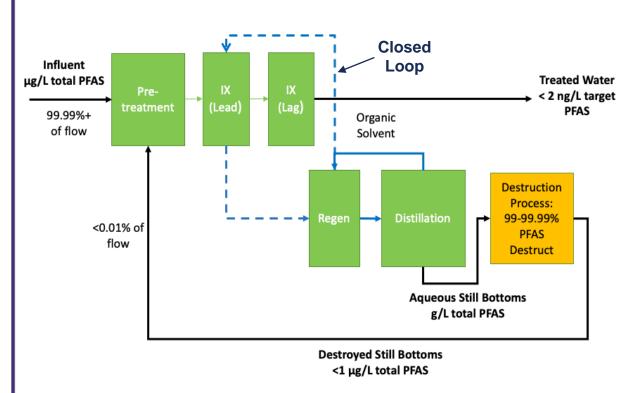




- FF effectively removed mg/L concentrations to ng/L
- One FF Stage removed PFOS/PFOA ~ 3 OOM
- 97%+ total PFAS removed
- 60 min singe stage **HRT** saw small improvement vs 30 min HRT
- 3rd FF stage only saw slight improvement
- Foamate for destruction: 58 mg/L **TOT PFAS**

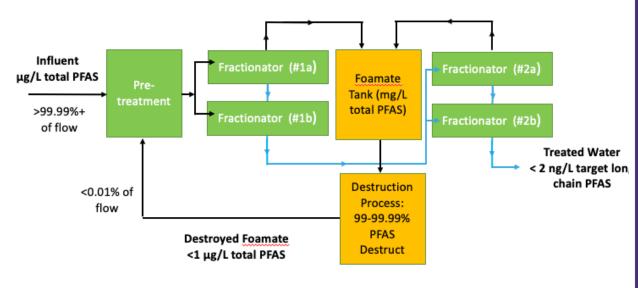
### Separate & Concentrate – Economics Regeneration of IX Resin




#### **Optimized Return on Investment:**

(by # of IX systems per Regeneration plant)

- 1 system per regen plant: ROI ~ 4 years
- 2 systems per regen plant: ROI ~ 2 years
- 3 systems per regen plant: ROI ~ 1.5 years


Regeneration of IX Resin provides concentration of PFAS 500,000:1 for destruction... and is also cost-effective long term vs. other options and is futureproof

### Separate, Concentrate, Destroy – Closed Loop Processes



Regeneration of IX Resin

Two Complete Closed-loop **PFAS Treatment Schematics** to Concentrate PFAS



**Foam Fractionation** 









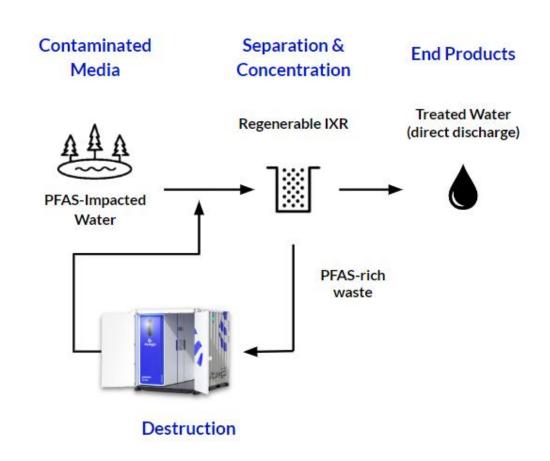


## Hydrothermal Alkaline Treatment (HALT) for PFAS Destruction



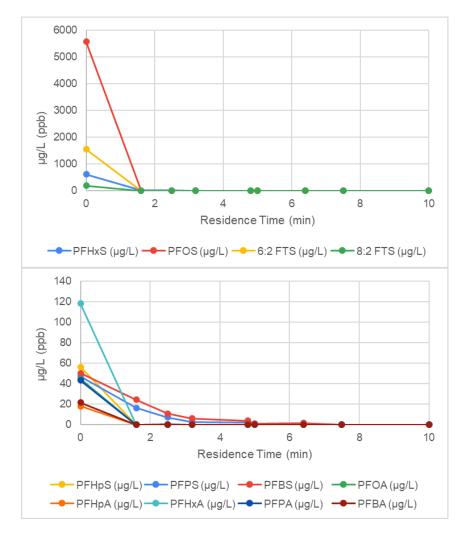





## Hydrothermal Alkaline Treatment

- PFAS Destruction technology
- Rapid treatment time (minutes)
- Leverages liquid water at high temperature, high pressure, high pH
- Effective for **complete** mineralization of all PFAS
- Commercial units currently being fabricated and available for field demonstrations




# Integrating PFAS Destruction Technology

- Example: Regenerable IXR with HALT
  - Use IXR to remove PFAS from contaminated liquid and produce concentrated liquid waste stream
  - Use HALT to reduce PFAS levels in concentrate by ~99.99%
  - Blend HALT effluent into IXR influent to capture residual PFAS
  - Keep PFAS in the loop
- Same strategy for foam fractionation with HALT



## HALT of Fire Training Pit Water

- >99.9% total PFAS reduction within 10 minutes of processing through continuous HALT system
  - PFOS reduction by >99.99%
  - PFHxS reduction by 99.77%
  - PFBS reduction by 99.67%
  - PFOA reduction by 99.997%
  - PFHxA reduction by 99.97%
  - PFBA reduction by 99.94%
- System performance characterized as function of residence time
- Pinkard et al., 2023. Chemosphere 314



# HALT of Foam Fractionate (Vendor 1)

| Analyte           | Foamate (ppb) | HALT Effluent (ppb) | Destruction % |
|-------------------|---------------|---------------------|---------------|
| PFOS              | 2,119         | 5.08                | 99.76%        |
| PFHpS             | 66.5          | 0.0342              | 99.95%        |
| PFHxS             | 751           | 0.261               | 99.97%        |
| PFPeS             | 81.8          | 0.0861              | 99.89%        |
| PFBS              | 48            | 0.291               | 99.39%        |
| PFOA              | 59.6          | 0.200               | 99.66%        |
| PFHpA             | 64.2          | ND                  | >99.99%       |
| PFHxA             | 145           | 0.0105              | 99.99%        |
| PFPeA             | 37.8          | 0.0144              | 99.96%        |
| PFBA              | 14.6          | 0.0392              | 99.73%        |
| 6:2 FTS           | 999           | ND                  | >99.999%      |
| <b>Total PFAS</b> | 4,386         | 6.016               | 99.86%        |



# HALT of Foam Fractionate (Vendor 2)

| Analyte    | Foamate (ppb) | HALT Effluent (ppb) | Destruction % |
|------------|---------------|---------------------|---------------|
| PFOS       | 36,400        | 10.9                | 99.97%        |
| PFHpS      | 522           | 0.199               | 99.96%        |
| PFHxS      | 6,260         | 3.34                | 99.95%        |
| PFPeS      | 1,160         | 1.09                | 99.91%        |
| PFBS       | 552           | 1.58                | 99.71%        |
| PFOA       | 484           | 0.047               | 99.99%        |
| PFHpA      | 334           | ND                  | >99.993%      |
| PFHxA      | 2,540         | ND                  | >99.999%      |
| PFPeA      | 196           | ND                  | >99.98%       |
| 6:2 FTS    | 8,800         | ND                  | >99.999%      |
| Total PFAS | 58,280        | 17.16               | 99.97%        |



# PFAS Destruction Technology Comparison

|                                     | Hydrothermal<br>Alkaline Treatment      | Supercritical Water Oxidation           | Electrochemical Oxidation                                    | UV-Sulfite                                           |
|-------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| Advantages                          | Ability to handle salts, moderate T & P | Can valorize fuel value to heat process | Low temperature, low pressure process                        | Low temperature, low pressure process                |
| Disadvantages                       | Chemical usage                          | Cannot handle high TDS levels           | Perchlorate formation, electrode fouling                     | Visible light must pass through matrix               |
| PFAS Destruction Performance        | Ability to mineralize all PFAS          | Ability to mineralize all PFAS          | Good with long-<br>chains, poor with<br>short-chains         | Good with carboxylic acids, poor with sulfonic acids |
| Energy Consumption                  | Moderate                                | High                                    | High                                                         | Moderate                                             |
| Ability to Treat IXR Still Bottoms? | Yes - demonstrated                      | No, challenges with high TDS            | No, challenges with perchlorate formation & short-chain PFAS | Currently in testing                                 |
| Ability to Treat Foam Fractionate?  | Yes - demonstrated                      | Currently in testing                    | No, challenges with electrode fouling                        | No, challenges with matrix complexity                |













- Hunter Anderson, richard.anderson.55@us.af.mil
- David Kempisty, dakempisty@ect2.com
- Brian Pinkard, brian@aquagga.com









# THANK YOU



Please take a few minutes to complete a short survey about this session. Your feedback will help us improve future programming for JETC.